3.3.12 \(\int \frac {\cot ^2(e+f x)}{\sqrt {d \cot (e+f x)}} \, dx\) [212]

Optimal. Leaf size=212 \[ -\frac {\text {ArcTan}\left (1-\frac {\sqrt {2} \sqrt {d \cot (e+f x)}}{\sqrt {d}}\right )}{\sqrt {2} \sqrt {d} f}+\frac {\text {ArcTan}\left (1+\frac {\sqrt {2} \sqrt {d \cot (e+f x)}}{\sqrt {d}}\right )}{\sqrt {2} \sqrt {d} f}-\frac {2 \sqrt {d \cot (e+f x)}}{d f}-\frac {\log \left (\sqrt {d}+\sqrt {d} \cot (e+f x)-\sqrt {2} \sqrt {d \cot (e+f x)}\right )}{2 \sqrt {2} \sqrt {d} f}+\frac {\log \left (\sqrt {d}+\sqrt {d} \cot (e+f x)+\sqrt {2} \sqrt {d \cot (e+f x)}\right )}{2 \sqrt {2} \sqrt {d} f} \]

[Out]

-1/2*arctan(1-2^(1/2)*(d*cot(f*x+e))^(1/2)/d^(1/2))/f*2^(1/2)/d^(1/2)+1/2*arctan(1+2^(1/2)*(d*cot(f*x+e))^(1/2
)/d^(1/2))/f*2^(1/2)/d^(1/2)-1/4*ln(d^(1/2)+cot(f*x+e)*d^(1/2)-2^(1/2)*(d*cot(f*x+e))^(1/2))/f*2^(1/2)/d^(1/2)
+1/4*ln(d^(1/2)+cot(f*x+e)*d^(1/2)+2^(1/2)*(d*cot(f*x+e))^(1/2))/f*2^(1/2)/d^(1/2)-2*(d*cot(f*x+e))^(1/2)/d/f

________________________________________________________________________________________

Rubi [A]
time = 0.11, antiderivative size = 212, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 10, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.476, Rules used = {16, 3554, 3557, 335, 217, 1179, 642, 1176, 631, 210} \begin {gather*} -\frac {\text {ArcTan}\left (1-\frac {\sqrt {2} \sqrt {d \cot (e+f x)}}{\sqrt {d}}\right )}{\sqrt {2} \sqrt {d} f}+\frac {\text {ArcTan}\left (\frac {\sqrt {2} \sqrt {d \cot (e+f x)}}{\sqrt {d}}+1\right )}{\sqrt {2} \sqrt {d} f}-\frac {2 \sqrt {d \cot (e+f x)}}{d f}-\frac {\log \left (\sqrt {d} \cot (e+f x)-\sqrt {2} \sqrt {d \cot (e+f x)}+\sqrt {d}\right )}{2 \sqrt {2} \sqrt {d} f}+\frac {\log \left (\sqrt {d} \cot (e+f x)+\sqrt {2} \sqrt {d \cot (e+f x)}+\sqrt {d}\right )}{2 \sqrt {2} \sqrt {d} f} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Cot[e + f*x]^2/Sqrt[d*Cot[e + f*x]],x]

[Out]

-(ArcTan[1 - (Sqrt[2]*Sqrt[d*Cot[e + f*x]])/Sqrt[d]]/(Sqrt[2]*Sqrt[d]*f)) + ArcTan[1 + (Sqrt[2]*Sqrt[d*Cot[e +
 f*x]])/Sqrt[d]]/(Sqrt[2]*Sqrt[d]*f) - (2*Sqrt[d*Cot[e + f*x]])/(d*f) - Log[Sqrt[d] + Sqrt[d]*Cot[e + f*x] - S
qrt[2]*Sqrt[d*Cot[e + f*x]]]/(2*Sqrt[2]*Sqrt[d]*f) + Log[Sqrt[d] + Sqrt[d]*Cot[e + f*x] + Sqrt[2]*Sqrt[d*Cot[e
 + f*x]]]/(2*Sqrt[2]*Sqrt[d]*f)

Rule 16

Int[(u_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Dist[1/b^m, Int[u*(b*v)^(m + n), x], x] /; FreeQ[{b, n}, x
] && IntegerQ[m]

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 217

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]}, Di
st[1/(2*r), Int[(r - s*x^2)/(a + b*x^4), x], x] + Dist[1/(2*r), Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[
{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ, b
]]))

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 631

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[a*(c/b^2)]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1176

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[2*(d/e), 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1179

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[-2*(d/e), 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 3554

Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[b*((b*Tan[c + d*x])^(n - 1)/(d*(n - 1))), x] - Dis
t[b^2, Int[(b*Tan[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1]

Rule 3557

Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[b/d, Subst[Int[x^n/(b^2 + x^2), x], x, b*Tan[c + d
*x]], x] /; FreeQ[{b, c, d, n}, x] &&  !IntegerQ[n]

Rubi steps

\begin {align*} \int \frac {\cot ^2(e+f x)}{\sqrt {d \cot (e+f x)}} \, dx &=\frac {\int (d \cot (e+f x))^{3/2} \, dx}{d^2}\\ &=-\frac {2 \sqrt {d \cot (e+f x)}}{d f}-\int \frac {1}{\sqrt {d \cot (e+f x)}} \, dx\\ &=-\frac {2 \sqrt {d \cot (e+f x)}}{d f}+\frac {d \text {Subst}\left (\int \frac {1}{\sqrt {x} \left (d^2+x^2\right )} \, dx,x,d \cot (e+f x)\right )}{f}\\ &=-\frac {2 \sqrt {d \cot (e+f x)}}{d f}+\frac {(2 d) \text {Subst}\left (\int \frac {1}{d^2+x^4} \, dx,x,\sqrt {d \cot (e+f x)}\right )}{f}\\ &=-\frac {2 \sqrt {d \cot (e+f x)}}{d f}+\frac {\text {Subst}\left (\int \frac {d-x^2}{d^2+x^4} \, dx,x,\sqrt {d \cot (e+f x)}\right )}{f}+\frac {\text {Subst}\left (\int \frac {d+x^2}{d^2+x^4} \, dx,x,\sqrt {d \cot (e+f x)}\right )}{f}\\ &=-\frac {2 \sqrt {d \cot (e+f x)}}{d f}+\frac {\text {Subst}\left (\int \frac {1}{d-\sqrt {2} \sqrt {d} x+x^2} \, dx,x,\sqrt {d \cot (e+f x)}\right )}{2 f}+\frac {\text {Subst}\left (\int \frac {1}{d+\sqrt {2} \sqrt {d} x+x^2} \, dx,x,\sqrt {d \cot (e+f x)}\right )}{2 f}-\frac {\text {Subst}\left (\int \frac {\sqrt {2} \sqrt {d}+2 x}{-d-\sqrt {2} \sqrt {d} x-x^2} \, dx,x,\sqrt {d \cot (e+f x)}\right )}{2 \sqrt {2} \sqrt {d} f}-\frac {\text {Subst}\left (\int \frac {\sqrt {2} \sqrt {d}-2 x}{-d+\sqrt {2} \sqrt {d} x-x^2} \, dx,x,\sqrt {d \cot (e+f x)}\right )}{2 \sqrt {2} \sqrt {d} f}\\ &=-\frac {2 \sqrt {d \cot (e+f x)}}{d f}-\frac {\log \left (\sqrt {d}+\sqrt {d} \cot (e+f x)-\sqrt {2} \sqrt {d \cot (e+f x)}\right )}{2 \sqrt {2} \sqrt {d} f}+\frac {\log \left (\sqrt {d}+\sqrt {d} \cot (e+f x)+\sqrt {2} \sqrt {d \cot (e+f x)}\right )}{2 \sqrt {2} \sqrt {d} f}+\frac {\text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\frac {\sqrt {2} \sqrt {d \cot (e+f x)}}{\sqrt {d}}\right )}{\sqrt {2} \sqrt {d} f}-\frac {\text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\frac {\sqrt {2} \sqrt {d \cot (e+f x)}}{\sqrt {d}}\right )}{\sqrt {2} \sqrt {d} f}\\ &=-\frac {\tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt {d \cot (e+f x)}}{\sqrt {d}}\right )}{\sqrt {2} \sqrt {d} f}+\frac {\tan ^{-1}\left (1+\frac {\sqrt {2} \sqrt {d \cot (e+f x)}}{\sqrt {d}}\right )}{\sqrt {2} \sqrt {d} f}-\frac {2 \sqrt {d \cot (e+f x)}}{d f}-\frac {\log \left (\sqrt {d}+\sqrt {d} \cot (e+f x)-\sqrt {2} \sqrt {d \cot (e+f x)}\right )}{2 \sqrt {2} \sqrt {d} f}+\frac {\log \left (\sqrt {d}+\sqrt {d} \cot (e+f x)+\sqrt {2} \sqrt {d \cot (e+f x)}\right )}{2 \sqrt {2} \sqrt {d} f}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.12, size = 159, normalized size = 0.75 \begin {gather*} -\frac {\sqrt {\cot (e+f x)} \left (2 \sqrt {2} \text {ArcTan}\left (1-\sqrt {2} \sqrt {\cot (e+f x)}\right )-2 \sqrt {2} \text {ArcTan}\left (1+\sqrt {2} \sqrt {\cot (e+f x)}\right )+8 \sqrt {\cot (e+f x)}+\sqrt {2} \log \left (1-\sqrt {2} \sqrt {\cot (e+f x)}+\cot (e+f x)\right )-\sqrt {2} \log \left (1+\sqrt {2} \sqrt {\cot (e+f x)}+\cot (e+f x)\right )\right )}{4 f \sqrt {d \cot (e+f x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Cot[e + f*x]^2/Sqrt[d*Cot[e + f*x]],x]

[Out]

-1/4*(Sqrt[Cot[e + f*x]]*(2*Sqrt[2]*ArcTan[1 - Sqrt[2]*Sqrt[Cot[e + f*x]]] - 2*Sqrt[2]*ArcTan[1 + Sqrt[2]*Sqrt
[Cot[e + f*x]]] + 8*Sqrt[Cot[e + f*x]] + Sqrt[2]*Log[1 - Sqrt[2]*Sqrt[Cot[e + f*x]] + Cot[e + f*x]] - Sqrt[2]*
Log[1 + Sqrt[2]*Sqrt[Cot[e + f*x]] + Cot[e + f*x]]))/(f*Sqrt[d*Cot[e + f*x]])

________________________________________________________________________________________

Maple [A]
time = 0.11, size = 151, normalized size = 0.71

method result size
derivativedivides \(-\frac {2 \left (\sqrt {d \cot \left (f x +e \right )}-\frac {\left (d^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {d \cot \left (f x +e \right )+\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \cot \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}{d \cot \left (f x +e \right )-\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \cot \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d \cot \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {d \cot \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8}\right )}{f d}\) \(151\)
default \(-\frac {2 \left (\sqrt {d \cot \left (f x +e \right )}-\frac {\left (d^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {d \cot \left (f x +e \right )+\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \cot \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}{d \cot \left (f x +e \right )-\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \cot \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d \cot \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {d \cot \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8}\right )}{f d}\) \(151\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(f*x+e)^2/(d*cot(f*x+e))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-2/f/d*((d*cot(f*x+e))^(1/2)-1/8*(d^2)^(1/4)*2^(1/2)*(ln((d*cot(f*x+e)+(d^2)^(1/4)*(d*cot(f*x+e))^(1/2)*2^(1/2
)+(d^2)^(1/2))/(d*cot(f*x+e)-(d^2)^(1/4)*(d*cot(f*x+e))^(1/2)*2^(1/2)+(d^2)^(1/2)))+2*arctan(2^(1/2)/(d^2)^(1/
4)*(d*cot(f*x+e))^(1/2)+1)-2*arctan(-2^(1/2)/(d^2)^(1/4)*(d*cot(f*x+e))^(1/2)+1)))

________________________________________________________________________________________

Maxima [A]
time = 0.51, size = 188, normalized size = 0.89 \begin {gather*} \frac {2 \, \sqrt {2} \sqrt {d} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \sqrt {d} + 2 \, \sqrt {\frac {d}{\tan \left (f x + e\right )}}\right )}}{2 \, \sqrt {d}}\right ) + 2 \, \sqrt {2} \sqrt {d} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \sqrt {d} - 2 \, \sqrt {\frac {d}{\tan \left (f x + e\right )}}\right )}}{2 \, \sqrt {d}}\right ) + \sqrt {2} \sqrt {d} \log \left (\sqrt {2} \sqrt {d} \sqrt {\frac {d}{\tan \left (f x + e\right )}} + d + \frac {d}{\tan \left (f x + e\right )}\right ) - \sqrt {2} \sqrt {d} \log \left (-\sqrt {2} \sqrt {d} \sqrt {\frac {d}{\tan \left (f x + e\right )}} + d + \frac {d}{\tan \left (f x + e\right )}\right ) - 8 \, \sqrt {\frac {d}{\tan \left (f x + e\right )}}}{4 \, d f} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)^2/(d*cot(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

1/4*(2*sqrt(2)*sqrt(d)*arctan(1/2*sqrt(2)*(sqrt(2)*sqrt(d) + 2*sqrt(d/tan(f*x + e)))/sqrt(d)) + 2*sqrt(2)*sqrt
(d)*arctan(-1/2*sqrt(2)*(sqrt(2)*sqrt(d) - 2*sqrt(d/tan(f*x + e)))/sqrt(d)) + sqrt(2)*sqrt(d)*log(sqrt(2)*sqrt
(d)*sqrt(d/tan(f*x + e)) + d + d/tan(f*x + e)) - sqrt(2)*sqrt(d)*log(-sqrt(2)*sqrt(d)*sqrt(d/tan(f*x + e)) + d
 + d/tan(f*x + e)) - 8*sqrt(d/tan(f*x + e)))/(d*f)

________________________________________________________________________________________

Fricas [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)^2/(d*cot(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >>  Error detected within library code:   catdef: division by zero

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\cot ^{2}{\left (e + f x \right )}}{\sqrt {d \cot {\left (e + f x \right )}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)**2/(d*cot(f*x+e))**(1/2),x)

[Out]

Integral(cot(e + f*x)**2/sqrt(d*cot(e + f*x)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)^2/(d*cot(f*x+e))^(1/2),x, algorithm="giac")

[Out]

integrate(cot(f*x + e)^2/sqrt(d*cot(f*x + e)), x)

________________________________________________________________________________________

Mupad [B]
time = 2.66, size = 77, normalized size = 0.36 \begin {gather*} -\frac {2\,\sqrt {d\,\mathrm {cot}\left (e+f\,x\right )}}{d\,f}-\frac {{\left (-1\right )}^{1/4}\,\mathrm {atan}\left (\frac {{\left (-1\right )}^{1/4}\,\sqrt {d\,\mathrm {cot}\left (e+f\,x\right )}}{\sqrt {d}}\right )\,1{}\mathrm {i}}{\sqrt {d}\,f}-\frac {{\left (-1\right )}^{1/4}\,\mathrm {atanh}\left (\frac {{\left (-1\right )}^{1/4}\,\sqrt {d\,\mathrm {cot}\left (e+f\,x\right )}}{\sqrt {d}}\right )\,1{}\mathrm {i}}{\sqrt {d}\,f} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(e + f*x)^2/(d*cot(e + f*x))^(1/2),x)

[Out]

- (2*(d*cot(e + f*x))^(1/2))/(d*f) - ((-1)^(1/4)*atan(((-1)^(1/4)*(d*cot(e + f*x))^(1/2))/d^(1/2))*1i)/(d^(1/2
)*f) - ((-1)^(1/4)*atanh(((-1)^(1/4)*(d*cot(e + f*x))^(1/2))/d^(1/2))*1i)/(d^(1/2)*f)

________________________________________________________________________________________